长城知识网

国考浓度公式是什么?2025最新计算方式来了?

国考”本身并没有一个官方、独立的“浓度公式”,这里的“浓度公式”是一个俗称,它指的是在国家公务员行测考试“数量关系”或“资料分析”部分,经常会遇到的一类数学问题的解题模型,这类问题通常被称为“溶液浓度问题”

国考浓度公式是什么?2025最新计算方式来了?-图1

这类问题的核心是研究溶质、溶剂、溶液三者之间的关系。


核心基础概念

要理解浓度问题,必须先弄清楚三个基本概念:

  1. 溶质:被溶解的物质,糖水中的糖、盐水中的盐。
  2. 溶剂:用来溶解溶质的物质,糖水中的水、盐水中的水。
  3. 溶液:溶质和溶剂混合后得到的液体,糖水、盐水。

它们之间的关系是: 溶液 = 溶质 + 溶剂


核心浓度公式

这是解决所有浓度问题的基石,必须牢记。

基本公式:

浓度 = (溶质的量 / 溶液的总量) × 100%

根据这个基本公式,我们可以推导出另外两个常用的公式:

溶质的量 = 溶液的总量 × 浓度 溶液的总量 = 溶质的量 / 浓度


核心解题思想与方法

在国考中,浓度问题往往不会只考一个孤立的计算,而是会结合一些变化来考察,掌握以下几种核心思想和方法至关重要。

特值法

这是解决浓度问题最常用、最有效的方法,当题目中没有给出具体的量,只涉及比例或变化时,我们可以为某个量(通常是溶液的总量)设定一个方便计算的“特定数值”,从而简化计算。

应用场景:当题目中只提到“加入水”、“蒸发水”、“混合”等操作,但没有给出具体数值时。

十字交叉法

这是一个非常快速的计算两种溶液混合后浓度的方法,也是国考的常考技巧。

适用场景:计算两种不同浓度的溶液混合后所得溶液的浓度。

模型: 假设有甲、乙两种溶液,浓度分别为 a%b% (a > b),质量分别为 mn,将它们混合后得到的新溶液浓度为 c%

则它们的质量比与浓度差成反比,可以用十字交叉法表示:

      甲溶液      a%        (c - b)      m
                  \        /            ===
                   \      /             n
新溶液      c% ------
                   /      \
                  /        \
      乙溶液      b%        (a - c)      n

m / n = (c - b) / (a - c) 即,两种溶液的质量比等于它们与新溶液浓度差的反比


常见题型与解题技巧

基础计算

直接代入公式计算。

例题:将 20 克盐溶于 180 克水中,求盐水的浓度。 解析

  • 溶质(盐) = 20 克
  • 溶液(盐水) = 20 + 180 = 200 克
  • 浓度 = (20 / 200) × 100% = 10%

稀释问题(加水)

核心思想:溶质的量不变

例题:现有浓度为 20% 的糖水 200 克,要将其稀释为 10% 的糖水,需要加入多少克水? 解析

  • 公式法
    • 稀释前溶质(糖)的量 = 200 × 20% = 40 克。
    • 设需要加入 x 克水,稀释后溶液总量为 (200 + x) 克。
    • 稀释后浓度 = 溶质 / 新溶液总量 => 10% = 40 / (200 + x)
    • 解得:0.1 × (200 + x) = 40 => 20 + 0.1x = 40 => 0.1x = 20 => x = 200 克。
  • 特值法与十字交叉法
    • 原溶液浓度 20%,新溶液浓度 10%。
    • 可以看作是浓度为 0% 的水(溶剂)与 20% 的溶液混合。
    • 使用十字交叉法:
            20%        (10 - 0)     10
                       \        /     ===
                        \      /      10
            新溶液  10% ------
                        /      \
                       /        \
            水        0%        (20 - 10)  10
    • 原溶液与水的质量比为 10:10,即 1:1。
    • 原溶液有 200 克,所以需要加入 200 克水。

蒸发问题(去水)

核心思想:溶质的量不变,与稀释问题是逆运算。

例题:现有浓度为 10% 的盐水 100 克,经过蒸发后,盐水浓度变为 20%,问蒸发掉了多少克水? 解析

  • 蒸发前溶质(盐)的量 = 100 × 10% = 10 克。
  • 设蒸发后溶液总量为 y 克。
  • 蒸发后浓度 = 溶质 / 新溶液总量 => 20% = 10 / y
  • 解得:y = 10 / 0.2 = 50 克。
  • 蒸发掉的水 = 原溶液量 - 新溶液量 = 100 - 50 = 50 克。

加浓问题(加溶质)

核心思想:溶剂的量不变

例题:现有浓度为 10% 的糖水 90 克,要将其加浓为 20% 的糖水,需要加入多少克糖? 解析

  • 加浓前溶剂(水)的量 = 90 × (1 - 10%) = 90 × 0.9 = 81 克。
  • 设需要加入 z 克糖,加浓后溶液总量为 (90 + z) 克。
  • 加浓后浓度 = 溶质 / 新溶液总量 => 20% = (90 × 10% + z) / (90 + z)
  • 或者利用溶剂不变:加浓后溶剂(水)占总量的 80%。
  • 81 = (90 + z) × (1 - 20%) => 81 = (90 + z) × 0.8
  • 解得:90 + z = 81 / 0.8 = 101.25 => z = 11.25 克。

多次混合问题

核心思想:每次操作都只关注溶质或溶剂的变化,逐步计算

例题:从一瓶浓度为 20% 的糖水中倒出 1/4,再加入等量的水,如此操作两次,问最终糖水的浓度是多少? 解析

  • 分步计算
    • 设原有溶液 100 克(方便计算),则溶质有 20 克。
    • 第一次操作:倒出 1/4,倒出的溶质 = 20 × (1/4) = 5 克,剩余溶质 = 20 - 5 = 15 克,再加入 25 克水,溶液总量仍为 100 克,此时浓度 = 15 / 100 = 15%。
    • 第二次操作:倒出 1/4,倒出的溶质 = 15 × (1/4) = 3.75 克,剩余溶质 = 15 - 3.75 = 11.25 克,再加入 25 克水,溶液总量仍为 100 克,此时浓度 = 11.25 / 100 = 11.25%。
  • 公式法(更快捷)
    • 对于“倒出 1/x,再等量水”的操作,浓度的变化规律是:新浓度 = 原浓度 × (1 - 1/x)
    • 本题中,x = 4。
    • 操作一次后浓度 = 20% × (1 - 1/4) = 20% × 3/4 = 15%。
    • 操作两次后浓度 = 15% × (1 - 1/4) = 15% × 3/4 = 11.25%。

总结与备考建议

  1. 牢记公式:浓度 = 溶质/溶液,以及它的两个变形式。
  2. 掌握核心思想
    • 稀释/蒸发:抓住溶质不变
    • 加浓:抓住溶剂不变
  3. 善用技巧
    • 特值法是万金油,能简化大量计算。
    • 十字交叉法是混合问题的利器,务必熟练掌握。
  4. 勤加练习:国考的浓度问题往往和工程问题、利润问题等结合,或者以更复杂的形式出现,通过大量刷题来熟悉各种题型,培养快速识别模型和选择最优解法的能力。

希望这份详细的解析能帮助你彻底掌握国考中的“浓度公式”和相关问题!祝你备考顺利!

分享:
扫描分享到社交APP
上一篇
下一篇